161 research outputs found

    Persistence of virus-specific immune responses in the central nervous system of mice after West Nile virus infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>West Nile virus (WNV) persists in humans and several animal models. We previously demonstrated that WNV persists in the central nervous system (CNS) of mice for up to 6 months post-inoculation. We hypothesized that the CNS immune response is ineffective in clearing the virus.</p> <p>Results</p> <p>Immunocompetent, adult mice were inoculated subcutaneously with WNV, and the CNS immune response was examined at 1, 2, 4, 8, 12 and 16 weeks post-inoculation (wpi). Characterization of lymphocyte phenotypes in the CNS revealed elevation of CD19<sup>+ </sup>B cells for 4 wpi, CD138 plasma cells at 12 wpi, and CD4<sup>+ </sup>and CD8<sup>+ </sup>T cells for at least 12 wpi. T cells recruited to the brain were activated, and regulatory T cells (Tregs) were present for at least 12 wpi. WNV-specific antibody secreting cells were detected in the brain from 2 to 16 wpi, and virus-specific CD8<sup>+ </sup>T cells directed against an immunodominant WNV epitope were detected in the brain from 1 to 16 wpi. Furthermore, these WNV-specific immune responses occurred in mice with and without acute clinical disease.</p> <p>Conclusions</p> <p>Virus-specific immune cells persist in the CNS of mice after WNV infection for up to 16 wpi.</p

    T-cell Responses to Dengue Virus in Humans

    Get PDF
    Dengue virus (DENV) is a leading cause of morbidity and mortality in most tropical and subtropical areas of the world. Dengue virus infection induces specific CD4+CD8– and CD8+CD4– T cells in humans. In primary infection, T-cell responses to DENV are serotype cross-reactive, but the highest response is to the serotype that caused the infection. The epitopes recognized by DENV-specific T cells are located in most of the structural and non-structural proteins, but NS3 is the protein that is most dominantly recognized. In patients with dengue hemorrhagic fever (DHF) caused by secondary DENV infection, T cells are highly activated in vivo. These highly activated T cells are DENV-specific and oligoclonal. Multiple kinds of lymphokines are produced by the activated T cells, and it has been hypothesized that these lymphokines are responsible for induction of plasma leakage, one of the most characteristic features of DHF. Thus, T-cells play important roles in the pathogenesis of DHF and in the recovery from DENV infection

    Robust Intrapulmonary CD8 T Cell Responses and Protection with an Attenuated N1L Deleted Vaccinia Virus

    Get PDF
    BACKGROUND: Vaccinia viruses have been used as a model for viral disease and as a protective live vaccine. METHODOLOGY AND PRINCIPAL FINDINGS: We investigated the immunogenicity of an attenuated strain of vaccinia virus engineered to inactivate the N1L gene (vGK5). Using the intranasal route, this recombinant virus was 2 logs less virulent compared to the wildtype VACV-WR. Infection by the intranasal, intraperitoneal, and tail scarification routes resulted in the robust induction of cytolytic virus-specific CD8 T cells in the spleens and the lungs. VACV-specific antibodies were also detected in the sera of mice infected 3-5 months prior with the attenuated vGK5 virus. Finally, mice immunized with vGK5 were significantly protected when challenged with a lethal dose of VACV-WR. CONCLUSIONS: These results indicate that the attenuated vGK5 virus protects against subsequent infection and suggest that the N1L protein limits the strength of the early antiviral CD8 T cell response following respiratory infection

    Molecular evolution of dengue type 2 virus in Thailand

    Get PDF
    Dengue is a mosquito-borne viral infection that in recent years has become a major international public health concern. Dengue hemorrhagic fever (DHF), first recognized in Southeast Asia in the 1950s, is today a leading cause of childhood death in many countries. The pathogenesis of this illness is poorly understood, mainly because there are no laboratory or animal models of disease. We have studied the genetic relationships of dengue viruses of serotype 2, one of four antigenically distinct dengue virus groups, to determine if viruses obtained from cases of less severe dengue fever (DF) have distinct evolutionary origins from those obtained from DHF cases. A very large number (73) of virus samples from patients with DF or DHF in two locations in Thailand (Bangkok and Kamphaeng Phet) were compared by sequence analysis of 240 nucleotides from the envelope/nonstructural protein 1 (E/NS1) gene junction of the viral genome. Phylogenetic trees generated with these data have been shown to reflect long-term evolutionary relationships among strains. The results suggest that 1) many different virus variants may circulate simultaneously in Thailand, thus reflecting the quasispecies nature of these RNA viruses, in spite of population immunity; 2) viruses belonging to two previously distinct genotypic groups have been isolated from both DF and DHF cases, supporting the view that they arose from a common progenitor and share the potential to cause severe disease; and 3) viruses associated with the potential to cause DHF segregate into what is now one, large genotypic group and they have evolved independently in Southeast Asia for some time

    Preliminary evaluation of near infrared spectroscopy as a method to detect plasma leakage in children with dengue hemorrhagic fever

    Get PDF
    BACKGROUND: Dengue viral infections are prevalent in the tropical and sub-tropical regions of the world, resulting in substantial morbidity and mortality. Clinical manifestations range from a self-limited fever to a potential life-threatening plasma leakage syndrome (dengue hemorrhagic fever). The objective of this study was to assess the utility of near infrared spectroscopy (NIRS) measurements of muscle oxygen saturation (SmO2) as a possible continuous measure to detect plasma leakage in children with dengue. METHODS: Children ages 6 months to 15 years of age admitted with suspected dengue were enrolled from the dengue ward at Queen Sirikit National Institute for Child Health. Children were monitored daily until discharge. NIRS data were collected continuously using a prototype CareGuide Oximeter 1100 with sensors placed on the deltoid or thigh. Daily ultrasound of the chest and a right lateral decubitus chest x-ray the day after defervescence were performed to detect and quantitate plasma leakage in the pleural cavity. RESULTS: NIRS data were obtained from 19 children with laboratory-confirmed dengue. Average minimum SmO2 decreased for all subjects prior to defervescence. Average minimum SmO2 subsequently increased in children with no ultrasound evidence of pleural effusion but remained low in children with pleural effusion following defervescence. Average minimum SmO2 was inversely correlated with pleural space fluid volume. ROC analysis revealed a cut-off value for SmO2 which yielded high specificity and sensitivity. CONCLUSIONS: SmO2 measured using NIRS may be a useful guide for real-time and non-invasive identification of plasma leakage in children with dengue. Further investigation of the utility of NIRS measurements for prediction and management of severe dengue syndromes is warranted

    Spatial and temporal clustering of dengue virus transmission in Thai villages.

    Get PDF
    BackgroundTransmission of dengue viruses (DENV), the leading cause of arboviral disease worldwide, is known to vary through time and space, likely owing to a combination of factors related to the human host, virus, mosquito vector, and environment. An improved understanding of variation in transmission patterns is fundamental to conducting surveillance and implementing disease prevention strategies. To test the hypothesis that DENV transmission is spatially and temporally focal, we compared geographic and temporal characteristics within Thai villages where DENV are and are not being actively transmitted.Methods and findingsCluster investigations were conducted within 100 m of homes where febrile index children with (positive clusters) and without (negative clusters) acute dengue lived during two seasons of peak DENV transmission. Data on human infection and mosquito infection/density were examined to precisely (1) define the spatial and temporal dimensions of DENV transmission, (2) correlate these factors with variation in DENV transmission, and (3) determine the burden of inapparent and symptomatic infections. Among 556 village children enrolled as neighbors of 12 dengue-positive and 22 dengue-negative index cases, all 27 DENV infections (4.9% of enrollees) occurred in positive clusters (p &lt; 0.01; attributable risk [AR] = 10.4 per 100; 95% confidence interval 1-19.8 per 100]. In positive clusters, 12.4% of enrollees became infected in a 15-d period and DENV infections were aggregated centrally near homes of index cases. As only 1 of 217 pairs of serologic specimens tested in positive clusters revealed a recent DENV infection that occurred prior to cluster initiation, we attribute the observed DENV transmission subsequent to cluster investigation to recent DENV transmission activity. Of the 1,022 female adult Ae. aegypti collected, all eight (0.8%) dengue-infected mosquitoes came from houses in positive clusters; none from control clusters or schools. Distinguishing features between positive and negative clusters were greater availability of piped water in negative clusters (p &lt; 0.01) and greater number of Ae. aegypti pupae per person in positive clusters (p = 0.04). During primarily DENV-4 transmission seasons, the ratio of inapparent to symptomatic infections was nearly 1:1 among child enrollees. Study limitations included inability to sample all children and mosquitoes within each cluster and our reliance on serologic rather than virologic evidence of interval infections in enrollees given restrictions on the frequency of blood collections in children.ConclusionsOur data reveal the remarkably focal nature of DENV transmission within a hyperendemic rural area of Thailand. These data suggest that active school-based dengue case detection prompting local spraying could contain recent virus introductions and reduce the longitudinal risk of virus spread within rural areas. Our results should prompt future cluster studies to explore how host immune and behavioral aspects may impact DENV transmission and prevention strategies. Cluster methodology could serve as a useful research tool for investigation of other temporally and spatially clustered infectious diseases

    Dengue Viral RNA Levels in Peripheral Blood Mononuclear Cells are Associated with Disease Severity and Preexisting Dengue Immune Status

    Get PDF
    Background Infection with dengue viruses (DENV) causes a wide range of manifestations from asymptomatic infection to a febrile illness called dengue fever (DF), to dengue hemorrhagic fever (DHF). The in vivo targets of DENV and the relation between the viral burden in these cells and disease severity are not known. Method The levels of positive and negative strand viral RNA in peripheral blood monocytes, T/NK cells, and B cells and in plasma of DF and DHF cases were measured by quantitative RT-PCR. Results Positive strand viral RNA was detected in monocytes, T/NK cells and B cells with the highest amounts found in B cells. Viral RNA levels in CD14+ cells and plasma were significantly higher in DHF compared to DF, and in cases with a secondary infection compared to those undergoing a primary infection. The distribution of viral RNA among cell subpopulations was similar in DF and DHF cases. Small amounts of negative strand RNA were found in a few cases only. The severity of plasma leakage correlated with viral RNA levels in plasma and in CD14+ cells. Conclusions B cells were the principal cells containing DENV RNA in peripheral blood, but overall there was little active DENV RNA replication detectable in peripheral blood mononuclear cells (PBMC). Secondary infection and DHF were associated with higher viral burden in PBMC populations, especially CD14+ monocytes, suggesting that viral infection of these cells may be involved in disease pathogenesis

    Evaluation of Cardiac Involvement in Children with Dengue by Serial Echocardiographic Studies

    Get PDF
    Background: Infection with dengue virus results in a wide range of clinical manifestations from dengue fever (DF), a self-limited febrile illness, to dengue hemorrhagic fever (DHF) which is characterized by plasma leakage and bleeding tendency. Although cardiac involvement has been reported in dengue, the incidence and the extent of cardiac involvement are not well defined. Methods and Principal Findings: We characterized the incidence and changes in cardiac function in a prospective in-patient cohort of suspected dengue cases by serial echocardiography. Plasma leakage was detected by serial chest and abdominal ultrasonography. Daily cardiac troponin-T levels were measured. One hundred and eighty one dengue cases were enrolled. On the day of enrollment, dengue cases that already developed plasma leakage had lower cardiac index (2695 (127) vs 3188 (75) (L/min/m2), p = .003) and higher left ventricular myocardial performance index (.413 (.021) vs .328 (.026), p = .021) and systemic vascular resistance (2478 (184) vs 1820 (133) (dynes·s/cm5), p = .005) compared to those without plasma leakage. Early diastolic wall motion of the left ventricle was decreased in dengue cases with plasma leakage compared to those without. Decreased left ventricular wall motility was more common in dengue patients compared to non-dengue cases particularly in cases with plasma leakage. Differences in cardiac function between DF and DHF were most pronounced around the time of plasma leakage. Cardiac dysfunction was transient and did not require treatment. Transient elevated troponin-T levels were more common in DHF cases compared to DF (14.5% vs 5%, p = 0.028). Conclusions: Transient left ventricular systolic and diastolic dysfunction was common in children hospitalized with dengue and related to severity of plasma leakage. The functional abnormality spontaneously resolved without specific treatment. Cardiac structural changes including myocarditis were uncommon. Author Summary: Dengue is a viral infection with a wide range of symptoms from a self-limiting fever called dengue fever (DF) to dengue hemorrhagic fever (DHF) which is characterized by leaky blood vessels and bleeding that can lead to shock in severe cases. Abnormal heart function has been reported but the frequencies and the progression of heart involvement are not well defined. In this study children with dengue had serial evaluation of their heart function during the course of the illness. Patients with DHF had comparatively low blood volume at the time of fever resolution and had decreased blood flow into the left lower heart chamber compared to DF cases. Relaxation and contraction of the left side of the heart were also relatively decreased in DHF. These abnormalities may contribute to the clinical response and complications of fluid replacement in dengue

    Rapid diagnosis of dengue viremia by reverse transcriptase-polymerase chain reaction using 3\u27-noncoding region universal primers

    Get PDF
    A reverse transcriptase-polymerase chain reaction (RT-PCR) method was developed as a rapid diagnostic test of dengue viremia. To detect dengue viruses in serum or plasma specimens, a pair of universal primers was designed for use in the RT-PCR. Using these primers, the 3\u27-noncoding region of dengue virus types 1, 2, 3, and 4 could be amplified, but not those of other flaviviruses, such as West Nile virus, Japanese encephalitis virus, and yellow fever virus, or the alphavirus Sindbis virus. The sensitivity of the RT-PCR assay was similar to that of a quantitative fluorescent focus assay of dengue viruses in cell culture. Combining a silica method for RNA isolation and RT-PCR dengue virus could be detected in a 6-hr assay. In a preliminary study using this method, we detected dengue virus in 38 of 39 plasma specimens from which dengue virus had been isolated by mosquito inoculation. We then applied this method for detecting dengue viremia to 117 plasma samples from 62 children with acute febrile illnesses in a dengue-endemic area. We detected dengue viremia in 19 of 20 samples obtained on the day of presentation, which had been confirmed as acute dengue infection by mosquito inoculation and antibody responses. The overall sensitivity of this method was 91.4% (32 of 35; 95% confidence interval [CI] = 82.2-100%). The results from testing plasma samples from febrile nondengue patients showed a specificity of 95.4% (42 of 44; 95% CI = 89.3-100%)

    T cell receptor Vbeta gene usage in Thai children with dengue virus infection

    Get PDF
    T lymphocyte activation during dengue is thought to contribute to the pathogenesis of dengue hemorrhagic fever (DHF). We examined the T cell receptor Vbeta gene usage by a reverse transcriptase-polymerase chain reaction assay during infection and after recovery in 13 children with DHF and 13 children with dengue fever (DF). There was no deletion of specific Vbeta gene families. We detected significant expansions in usage of single Vbeta families in six subjects with DHF and three subjects with DF over the course of infection, but these did not show an association with clinical diagnosis, viral serotype, or HLA alleles. Differences in Vbeta gene usage between subjects with DHF and subjects with DF were of borderline significance. These data suggest that the differences in T cell activation in DHF and DF are quantitative rather than qualitative and that T cells are activated by conventional antigen(s) and not a viral superantigen
    corecore